
 Advanced search

Linux Journal Issue #9/January 1995

Features

A Conversation with Linus Torvalds by Belinda Frazier
Associate Publisher Belinda Frazier talks with Linux about the
alpha port and getting ready for 1.2.

Connecting Your Linux Box to the Internet by Russell Ochocki
Need a faster connection? We lead you step-by-step throughthe
hardware and software maze.

Remote Network Commands by Jens Hartmann
A guide to using rlogin, rcp, and rsh to transfer and manipulate
data across a network.

News & Articles

Linux Development Grant Fund
Linux System Adminstration: Undelete Command by Mark
Komarinski

Reviews

Book Review Unix Systems for Modern Architectures by Randolph
Bentson

Columns

Letters to the Editor
From the Editor
Stop the Presses An Amazing Year by Phil Hughes

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/009/0036.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/1001.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/1002.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/0037.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/1006.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/0034.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/2892.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/1009.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/0022.html

Linux in the Real World by Vance Petree
New Products
Kernel Korner Block Device Drivers by Michael K. Johnson

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/009/1005.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/2891.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/2890.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Conversation with Linus Torvalds

Belinda Frazier

Issue #9, January 1995

Our associate publisher talks with Linus via e-mail to get and update on Linux
projects.

Linux Journal: You recently went on an international tour, speaking in Belgium,
Australia, Singapore, and other places. Could you describe some of the
questions or events you found interesting?

Linus Torvalds: Hmm. I got a few interesting questions. In Australia, for
example, I had two quite separate persons ask me whether the windows
emulator would be extended to run OS/2 programs as well. I couldn't answer
them (although I think it's very unlikely to be a high priority), but I found the fact
that somebody even asked interesting, as I haven't seen an OS/2 program.

Anyway, the most interesting parts of Australia weren't computers at all, but
the small and furry (and sometimes feathered) animals there. I got bitten by a
penguin in Canberra (Killer Penguins Strike Again), but it was a very small and
timid one. And I naturally saw all the normal Australian animals like wallabies,
koalas, etc.

LJ: Were you in a zoo or on the coast when you were bitten?

Linus: It was at a zoo in Canberra. The wild fairy penguins seem to be much too
shy to approach at all closely. I don't remember what the island with all the
penguins close to Melbourne was called (might have been Shark Island), but
reportedly people going there just get to see a lot of penguins; the penguins
are so shy that you won't get very close.

LJ: Where did you find the best beer?

[Editor's note: This question about beer needs an explanation for those new to
Linux. Linus thanked the “Oxford Beer Trolls” for sending him some virtual beer

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

in his release notes. Also, available on the Internet is a photo of Linus with a
beer bottle in front of him; the photo is captioned “Linus Torvalds—Creator of
Linux”. Jokes about virtual beer and virtual breweries have blossomed among
Linux users.]

Linus: The Australian beer was okay, although I happen to prefer Guinness, not
lagers. There was one interesting stout in Singapore called ABC stout (or
something equally exciting), but I still think I should probably go to Ireland
some day.

LJ: Did you hear any good jokes you could share with us?

Linus: I heard one ... but I don't think that one is suitable for a family magazine
like LJ.

LJ: How has your perception of the Linux user base changed?

Linus: I don't think my perceptions have changed all that much. The user base
is much more “user” these days and less “hacker”, but that's not some
revelation that I got during my trips abroad.

Some of them make a mean barbecue, and some of them say “G'day mate”.

LJ: The last time we talked via e-mail was last January and much has happened
during these past eight months. What Linux projects are you working on right
now?

Linus: Uhh.. Getting ready for 1.2, I guess. It's already late, but I'd like to have
that over and done with. Various problems there, of course—mainly the floppy
driver and the TCP problem with the new ciscos.

And the alpha port. Watch this space, but don't hold your breath or you'll go
blue and mottled in the face.

LJ: Those of your projections fulfilled or close to fulfillment include: i386 SYSV
binary compatibility and windows emulation (halfway there we're told). What
projects or work related to Unix, if any, have you been surprised to find not yet
fulfilled or close to fruition?

Linus: Me? Surprised about projects not fulfilled? You must be joking. I'm more
surprised about the various things that have been fulfilled (the Linux system
itself being one of the things I'm surprised by).

Of course, there are a few projects that haven't come to anything yet, but for
which I didn't really have high hopes (but I'd be more than happy to be proven
wrong). Like a nice WYSIWYG word processor (yes, I use LaTeX occasionally, but
no, I'm not crazy enough to think it's the answer).

LJ: We heard you were doing a 64-bit port for the Alpha. How is this
progressing?

Linus: Right now I just have a bootloader and am testing the Alpha console
code (essentially the same as the BIOS on the PC compatibles, but much more
complex and not as well documented). So I have a simple program which boots
the system and explores what's going on (the Alpha is a fun chip, I can tell you).
The port by Jim Paradis is much further along, and even gets you a shell prompt
(but not much else). I'll certainly leverage on that, but the travels have been
limiting my time in front of the computer.

LJ: I heard there were two efforts going on for Linux being ported to the
PowerPC and the Mac, and that one effort was put on hold because of lack of
information from Apple. Do you think the effort is stalled, or do you know if
there is still real progress being made?

Linus: I have no idea on the PowerPC port. I have only seen the occasional
reports (the latest one indeed saying that they had no knowledge about the IO
interfaces). Apple isn't known for disclosing technical information and IBM
doesn't seem to have any PowerPC machine out yet (except for the RT which
doesn't follow PReP). I don't know what will happen with the PowerPC (with
regard to Linux or anything else for that matter). I saw a report about IBM now
also considering the Pentium again.

LJ: What is PReP or a PReP machine?

Linus: PReP stands for “PowerPC Reference Platform”--essentially a unified
external interface to the PowerPC chip, defining the external bus and the BIOS
interface. It's an IBM standard, but even IBM doesn't have any machines out
there that follow that standard yet. IBM does have machines with the PowerPC
chipset, but those are in their RT line of Unix computers, and have their own
bus architecture around the chip (essentially the same one that the POWER
series of processors had which were the predecessors of the PowerPC chip).

LJ: Because you know the kernel better than anyone else, how do you feel
about the port? Do you think it will be an easy port? Do you think it will run as
well on a PowerPC as on the Intel architecture?

Linus: Oh, the PowerPC chip itself shouldn't be the problem. The memory
management of the chip is rather strange (and ugly, imho), but that can be
considered an extended TLB and the PowerPC port could well use the same
memory management architectures, etc., as the current i386 version. The port
should obviously run quite quickly on the chip.

The surrounding hardware (and thus the device drivers) will prove to be more
problematic unless something comes up (e.g., IBM finally releases a PReP
machine and actually gives enough technical documentation on it).

LJ: What is TLB?

Linus: TLB: Translation Lookaside Buffer. It's essentially a small cache inside the
processor that caches the page tables, so that the processor doesn't need to
look up the virtual-physical mapping in the page tables each time it does a
memory access.

The i386 has a TLB with 18 entries (don't quote me on that, but it's something
of that order), that it uses to cache the 2-level page tables that define the
virtual-memory layout. When a TLB cache miss occurs, the i386 will then (in
hardware) look up the virtual mapping in the page tables, and fill in the TLB.

The PowerPC uses a slightly different approach—it won't do a page table
lookup when it misses its TLB. Instead, it will look up a new TLB entry from a
hash table that has been filled in by the operating system. The operating
system can use whatever page table it wants to generate that hash table.

As a final example, let's take the Alpha: it has only a TLB and does any TLB miss
lookup in software (the PAL-code). So you can chose your own way of
implementing the page tables. (You could do a hash-table plus a physical page
table like the PowerPC, or you could go to the page tables directly, like the
i386.)

LJ: When do you think we will see Linux on PowerPCs?

Linus: I'll pass on that one. I think both the Alpha and the MIPS ports will be
there before the PowerPC, if only because the hardware and the
documentation already exist.

LJ: What are the new features you see as needed for Linux?

Linus: The main new feature needed by the average user would probably be
the ability to run windows binaries; I hope the Wine project really works out.
From a kernel view, the memory management needs some tuning, and the

buffer cache needs to be reorganized to allow indexing by inode and offset
instead of the current device- centered view. And threading is already
something of an issue.

LJ: “What's In a Name?” Do you think Linux would have taken off as fast if you'd
named the operating system what you first considered, Freakix? Do you think
someone would have published Freakix Journal?

Linus: Actually, it was just “Freax”. And I think Linux turned out to be a much
better name, even though I at first thought it would sound too egoistical.

LJ: Anything else you'd like to say?

Linus: So this is where you expect me to do all the interesting revelations, is it?
Foiled again.

LJ: Do you have any new hopes for Linux?

Linus: I think my “plan” says something like “World domination. Fast.” But we'll
see.

LJ: Thanks for the interview, Linus. We appreciate your taking the time to
answer our questions.

Live Chat

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/009/0036s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Connecting Your Linux Box to the Internet

Russell Ochocki

Issue #9, January 1995

Want a faster connection to the Internet? In this article, you'll learn how to get
your Linux box connected.

Ever wonder what it would be like to have your Linux box connected to the
backbone of the Internet? Well, maybe not the backbone—but how about a
direct connection to one of the many Internet service providers? Lightning-fast
response time. You could set up your very own ftp site, or perhaps a gopher or
World Wide Web server. Wouldn't it be nice to have Mosaic draw heavily
graphical World Wide Web pages in seconds instead of minutes at 14.4 kbps?

What does all this cost? You'd better sit down first. Comfy? Good. Assuming you
already have a Linux box, startup costs are in the range of $3,000-$5,000.
Monthly costs range anywhere from $500-$1,000. This generally places such a
connection out of reach for most people.

However, there is currently a rapidly-expanding market for small Internet
service providers, who need a faster connection to the Internet than 14.4 kbps
to be competitive—and some of whom are using Linux. There are also more
and more businesses becoming interested in having a presence on the
Internet, and many are using Linux boxes to provide this.

In this article, I'll take you on a tour of what's required to get a direct
connection to the Internet. First, I'll touch on the various software packages
you'll need to understand how to manage an Internet-connected machine.
Next, I'll introduce the concepts behind a direct Internet connection; I'll
describe the hardware required and the different configurations available.
Finally, I'll discuss how to select an Internet service provider.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Get Some Experience First

You've got a lot to learn. No, seriously. And, with the cost of a direct Internet
connection, the last place you want to learn this stuff is online. If you have the
time to do it right, I'd suggest connecting in several stages, learning in pieces as
you go along.

Let's assume you are fairly skilled at managing a Linux box. This is a skill you
can learn even if your machine has no connections to the outside world. In fact,
having no connections makes learning easier; it will allow you to focus on the
tasks needed to maintain a Linux box. Once you are comfortable doing this,
take one small step towards the Internet: Obtain a UUCP connection to your
machine.

A UUCP connection is a good way to get your feet wet connecting to the outside
world—it will teach you how to manage a news and mail feed. Most of the
Linux distributions come with all the news and mail tools you'll need. The Mail-
HOWTO guide and the News-HOWTO guide will help you configure things
correctly. News and mail are the two most common services on both directly
connected and indirectly connected Internet machines. These are important
services that people using your machine will expect to work. Spend the time to
learn how each package works. Make sure you understand how news and mail
are configured. Learn what log files are produced and where they are located.
When you connect your machine to the Internet, it is inevitable that you will
encounter problems with news and mail. You can save yourself a lot of time
and trouble by learning how these work now, rather than later.

The next step above a UUCP connection is a dial-up IP connection. Dial-up IP
places your machine on the Internet like a dedicated connection, whenever you
dial in. This will give you some experience running TCP/IP. You can also try
running your very own ftp site, a gopher server, or even an HTTP server for
WWW clients. If you expect to be running any of these services when you get
your dedicated connection, start experimenting with them now. Learn how to
configure them. Learn what log files are produced and where to find them.
Check out the comp.info-systems.www newsgroup.

Security becomes a very important issue once you place your machine on the
Internet. Any data residing on an Internet-connected machine can potentially
be read by anyone on the Internet, unless your security prevents it. Now, even
if you think you don't have anything on your machine that you don't mind
others reading, don't think you can just brush security concerns aside. There
are many documented bugs in Unix packages that allow hackers to gain access
to an existing account, or even root access.

To get up to speed on security, start by reading the comp.security .unix
newsgroup. It has an excellent FAQ on what to watch out for. Also check the
newsgroup comp.os.linux.announce. You will find Linux-specific security holes
posted here. The best method to determine just how secure your machine is, is
to have someone try and break in. If you know someone who is very
knowledgeable about Unix, that person would be an excellent candidate for the
job. If you don't know or trust someone enough to do this, just get a few
average computer people to try to break in. You'd be surprised at how many
holes even the average user can discover.

What Type of Dedicated Connection Should I Get?

At this point, if you have followed my advice, you've managed a UUCP news and
mail feed. You've worked with dial-up IP. Maybe you've even tried running a
gopher, ftp, or HTTP server. And, you have learned a lot about Unix security. If
you haven't, do it now!

A dedicated connection means your machine is connected to the Internet 24
hours a day. This speeds up services like news and mail. Mail between two
Internet-connected machines happens literally in seconds. The frequency of
Usenet news updates is controlled by each site. Hourly—or even more frequent
—news updates are commonplace. You also get some services that are only
available to Internet connected machines such as telnet, ftp, gopher, and World
Wide Web.

In order to put your machine on the Internet, you will need a dedicated line
between you and your service provider. A dedicated line is a telephone line that
is open 24 hours a day. What do I mean by open 24 hours a day? Say you call a
friend and talk for a few minutes. Then, you walk away from the phone for a
while. When you have something else to tell your friend, you pick up the phone
and tell him. You don't have to dial his number again because you've never
hung up. This service is billed at a fixed, monthly rate; there is no charge for
usage. The phone company connects the dedicated line to the destination
phone number. Only the phone company may change the destination.

You will have to decide how fast a connection you will need. The minimum
speed is 56 kbps, which is perfect for a small business. If you plan on
transferring audio in real-time, you will need a 1.54 Mbps line, commonly
known as a T1 line. If you plan to transfer video in real-time, you'll need a T3
line which transfers data at the rate of 45 Mbps. Watch out for bottlenecks—
buying a T1 line in the hopes of talking with a remote site across the country at
T1 speeds is pointless if any of the other lines the data will pass through are
running at 56 kbps.

Dedicated lines come in several different flavours. Analog lines can handle
speeds up to 28.8 kbps. This is the same grade as your typical home phone line.
You probably don't want one of these. Digital lines handle speeds of 56 kbps
right up to T3 (45 Mbps) speeds. The cost of a digital line depends on the
distance between you and your service provider. An alternative to digital
dedicated lines is frame relay. Frame relay is the new technology on the block.
Frame relay charges are based on speed, not distance; this may offer significant
savings over a digital line. Not all service providers support frame relay. Check
with your service provider. For the purposes of this article, I will assume you are
going to go with a digital line at 56 kbps. This is the most common Internet
connection.

With a dedicated connection, your Linux box is available 24 hours a day to
access the Internet. But beware, the reverse is also true. The Internet can
access your Linux box 24 hours a day. Keep your machine secure or you could
suffer a lot of damage from system crackers. In order to prevent this, consider
reading Cheswick and Bellovin's Firewalls and Internet Security, reviewed in
issue 6 of Linux Journal.

The Hardware

Before I describe a 56 kbps connection, let's review a connection with which
you are probably more familiar: a regular 14.4 kbps modem connection. (See
Figure 1 above.) A 14.4 kbps connection will require a serial port in each
machine, a modem at each machine and, of course, a telephone line. The two
modems communicate at 14.4 kbps using the v.32bis protocol. The serial
connection between each modem and the Linux box can be set at 19.2, 38.4, or
57.8 kbps; data compression is the reason the serial connection runs faster
than the modem. The modem connection is 14.4 kbps compressed with the v.
42bis compression protocol; the serial connection is uncompressed. In order
for the serial line to keep up with the modem connection, it must pass more
bits per second than the modem. Now that you know where all the protocols fit
into the picture in a 14.4 kbps connection, let's tackle a 56 kbps connection.

Take a look at Figure 2 (opposite). A 56 kbps connection may be too fast for
your serial port, so Ethernet offers an alternative. Ethernet signals cannot be
transferred over the telephone lines, so you must use a protocol specifically

designed for telephone lines, v.35. What you end up with is Ethernet coming
out of the Linux box, being converted to v.35 signals, and being transferred
over the telephone lines to your Internet service provider. You need to install
an Ethernet card in your Linux box and configure the kernel to support TCP/IP
—see the NET-2-HOWTO document for the details. To convert Ethernet signals
to v.35 signals you will need a router. Finally, to send the v.35 signals over the
phone lines, you will need a 56 kbps CSU/DSU (also known as a digital modem).

The router with CSU/DSU is the most common configuration for dedicated
connections to the Internet. Vendors are now selling hardware which combines
the router and CSU/DSU into one box. The single box is cheaper, but not as
flexible in case of future growth. For example, if you want to change from a 56
kbps to a 128 kbps line, you can use the same router with a 128 bkps CSU/DSU.
If you go with the single box, you'll have to replace the entire unit. Take into
account your plans for the future and pick the option that suits them.

It will soon also be possible to buy a v.35 CSU/DSU card that plugs directly into
your Linux box. That is, it is possible to buy the card now, but the driver is still
being developed as this is written. When the driver is available, this option will
cost less than an Ethernet card, router, and external CSU/DSU, be a little less
flexible, require that the Linux box it is attached to act as a router, and be ideal
for many situations where the Linux box is being used as a firewall. On the
other hand, it is a poor solution for sites with more than a few dial-in lines.

Choosing an Internet Service Provider

The Internet service provider business is booming right now. New companies
come online each month. Service providers come in all sizes—from large, cross-
country providers serving an entire country, to medium-sized, regional
providers serving several nearby cities, to small providers serving only a single
city.

Finding the larger providers and most medium-sized ones is easy. There are
several lists of service providers available; here are a couple I have found
useful:

• DLIST: A list of Internet service providers that sell direct connections.
Most, if not all, of the large national providers are listed here. You can get
a copy of this list by sending e-mail with an empty message body to
dlist@ora.com. If you have any problems getting this list, send e-mail to
mj@ora.com.

• PDIAL: A list of Internet service providers that offer dial-up accounts. The
PDIAL list contains many more providers than the DLIST. The additional
providers tend to be the small to medium-sized ones. Most of the
companies listed will provide dial-up accounts only; however, if you find a
provider close to you, call or e-mail them and ask if they sell dedicated
connections—some of them might. To receive the PDIAL list, send e-mail
to info-deli-server@netcom.com with “Send PDIAL” in the body of the
note.

Finding the smaller providers that service only your city can be a little trickier.
Check your city's computer paper. Check local user groups. Check with local
computer stores to see if they know of anyone providing Internet access in the
area. You'd be surprised how many consulting firms, out-sourcing companies,
and even computer stores are using the unused time on their computer
equipment to provide Internet access.

Most providers have an e-mail address you can send mail to for more
information; select a few and e-mail them. Describe your site to them and the
type of connection you are looking for. For example, if you have an office LAN
you want to connect to the Internet, tell them. See what they suggest and how
much it will cost.

Now, you have to be careful when it comes to costs. Some providers charge a
setup fee. Others require you to sign a six- or twelve-month agreement with
them. Some charge only for the Internet feed; you must pay the phone
company directly for the dedicated line. Others combine the two charges and
you pay the service provider only. Some require you to purchase a CSU/DSU at
their site. Others include this charge as part of your setup fee. In the end, you'll
have to decide on whether you want the flexibility of a month-to-month lease,
or the extra savings of a long-term commitment.

Narrow the possible candidates down to two or three good prospects. Then,
ask for references. The best way to check the quality of a service provider's
service is to talk with at least three other companies using their service and get
their opinions. Ask how long they have had the connection, what they like most,

what they like least, how often the connection goes down, and how long it takes
to get fixed. Ask for references similar to you in terms of type of connection,
number of users, and type of office network.

Maintenance is another issue. Some providers will install the equipment at your
site and maintain the equipment remotely; this is a good option for small sites
with little experience with the hardware involved. For the more daring, you can
install your own equipment at your site. You might have the odd interruption as
you learn how things work, but if you don't mind this possibility, the knowledge
you gain will be helpful to you later.

You still need to purchase a dedicated line from your site to your service
provider's site. Some service providers take care of this for you; others require
you to arrange this with the telephone company. Arranging for a dedicated line
is not difficult—you could do it yourself. The advantage of having the service
provider handle this is you only have one number to call if something goes
wrong with the connection. If you are dealing with two companies, each may
tell you the problem lies with the other's equipment and will ask you to contact
the other first. If you have ever run into this vendor-roulette before, you'll know
how frustrating it can be. Neither side wishes to investigate the problem until
the other side has investigated things first.

What To Do with Your Connection?

If you have an existing TCP/IP network that you are connecting to the Internet,
you may want to set up your Linux box as a firewall between your network and
the Internet. This is done to prevent unauthorized users from accessing
services you want only your local users to access. See the comp.security.unix
FAQ for more information about firewalls. If you plan on connecting dial-in lines
to your Linux box, I have some suggestions on the machine size and
configuration. These suggestions may not work for every situation, but they will
give you a starting point from which to work.

For a small operation with 1-4 dial-in modems, a 486DX33 with 16MB of RAM
and a four port serial card would be a good starter system. For a medium sized
operation with 4-16 dial-in modems, a 486DX33 with 32MB of RAM and a 16
port serial card might be reasonable configuration to start with. Keep in mind
that the CPU speed and amount of memory needed will ultimately depend on
what your users will be doing on your system. If they only read news and send
e-mail, this might be more than enough. If things start slowing down, add more
memory.

For a large operation with 16+ dial-in modems, try two 486DX66s with 16MB
each. Put a large hard drive on one machine and NFS mount it on the other
machine. With so many modems, you don't want to overburden your Linux box

with serial ports. Instead, you can get a terminal server which is a piece of
hardware that manages modems. Your modems plug into one end and an
Ethernet connection comes out of the other. Another feature of terminal
servers is they allow you to attach each modem (or port) to a different Linux
box. In this case you have two machines, so assign half to each machine. If your
machines are getting overloaded, you can increase memory as before, or you
can get a third machine and redistribute the ports accordingly.

Keep in mind that the above systems are only suggestions; there are too many
variables involved to suggest that any of the above systems will work in all
cases. Your configuration will ultimately depend on how many people use your
machine and what tasks they normally perform.

Looking Further

If you want more information about connecting to the Internet, I recommend
the following books:

• Connecting To the Internet, O'Reilly & Associates, ISBN 1-56592-061-9.
Covers all aspects of connecting and offers a general overview of how
data travels through the Internet, the different types of available
hardware, how to choose an Internet service provider, and the trade-offs
of dial-up IP vs. 56 kbps connections.

• Canadian Internet Handbook 1994 Edition, Prentice Hall Canada, ISBN
0-13-304395-9. If you live in Canada, this is an excellent source of
information on how the Internet flows through Canada; includes a list of
service providers by province.

Various USENET newsgroups are also an excellent source of information. Check
out the following:

• comp.security.unix - Unix security issues.
• comp.unix.admin - Administering Unix boxes in general.
• comp.os.linux.announce - Important announcements about Linux.
• comp.os.linux.admin - Administering a Linux box.

If you have a security question, ask it first in comp .security.unix. For the most
part, security is the same on all flavours of Unix—it is rarely Linux-specific. If
your question happens to be one of those rare cases, there are many Linux-
literate readers of this newsgroup who can help you out.

Connecting your machine or network to the Internet is a huge undertaking. But
if you take the time to learn how things work, you will be able to tackle this task
with ease. Good luck on your connection adventure.

Russell Ochocki, B.C.Sc. (Hons), is a computer programer/analyst for a major
Canadian financial corporation. He has been using Linux for over one and a half
years. He can be reached on the Internet at rdo@kynes.bison.mb.ca.

Russell Ochocki, (rdo@kynes.bison.mb.ca) B.C.Sc. (Hons), is a computer
programer/analyst for a major Canadian financial corporation. He has been
using Linux for over one and a half years.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rdo@kynes.bison.mb.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Remote Network Commands

Jens Hartmann

Issue #9, January 1995

Jens Hartman shows how to use rlogin, rcp, and rsh to transfer and manipulate
data on different computers from across the network.

Normally, being connected to some kind of network does not mean that you
are able to directly access all resources provided by that network. Some
devices, like tape drives and printers, are connected to special computers and
are only accessible on these machines. Others, such as disk drives, can be
accessed easily, when the system administrators allow it.

Gaining direct access to resources becomes more complicated the larger the
network gets. This is partly due to security reasons, and partly due to the
simple fact that the more people that have to be convinced you need to mount
a disk, the less your chance of success. From this follows the rule that the more
resources available, the harder it will usually be to connect to them.

A nice and easy way around this dilemma is using the remote commands
rlogin, rcp and rsh. These commands allow access to any account that is owned
by you on any computer in the network without the use of a password. rcp and
rlogin can be compared with ftp and telnet, whereas rsh offers the possibility to
combine commands on different machines in one shell pipeline.

Configuration is extremely easy—in fact, your host network is probably
configured correctly already—and you have instant access to these capabilities.
In this article, I present these commands, explain the local setup, give some
examples to give you a start, show some options, and demonstrate the
complexity that can be reached. Most of my examples can easily be replicated
on your networked machine.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Setup:

Under normal conditions (your network is up, you can telnet into other
machines, and you can be reached by other machines), the only thing you need
to do is create a file called .rhosts in your home directory which is readable and
writable only by you (mode 600). This file should contain the full hostnames of
each of the machines you want to log in from, and the user name on that
machine, like this:

apple.groucho.edu fred
orange.groucho.edu sam

The .rhosts file specifies the machines and users that are allowed to login to the
user on the machine where the .rhosts file resides. If I am logged in as sam on
the machine banana.groucho.edu and I have the above .rhosts file in my home
directory, then the user sam from orange.groucho.edu and the user fred from
the machine apple.groucho.edu have remote access to my account.

Now, I log into apple.groucho.edu (username fred) from my account on
banana.groucho.edu. From apple.groucho.edu I run the following command:
rlogin banana.groucho.edu -l sam. Once you are logged in, shell commands will
work as normal.

If you are asked to enter your password, do not enter a password, but instead
quickly switch back to your original login on banana.groucho.edu and type ps -

a. In the process list your rlogin request should appear with the name of the
machine it came from as an argument. When this is different from the name
you entered in the .rhosts file, you will need to enter the new name. Sometimes
a machine uses different lines or a common server for such communication,
although its name doesn't change. If there is still no connection, you should ask
the system administrator. Some machines simply don't allow any rlogin
commands.

In order to respond to any rlogin request, your Linux machine's inetd.conf

should have the following two lines:

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind

When you are a member of a domain and share usernames, you might want to
include the hosts you frequently connect to in /etc/hosts.equiv. In this case
your .rhosts file may contain only the nickname (which is commonly just the
machine name without the domain information) together with the username.
The above example .rhosts file on the machine named banana.groucho.edu
would then look like:

apple.groucho.edu fred
orange sam

RCP:

The rcp command copies files or directories from one machine to another. It is
used like the cp command. For instance, I can copy a file named test.dat from
the remote machine banana to my local machine orange. (For this example to
work the two machines must share usernames.)

rcp banana:test.dat .

or

rcp banana.groucho.edu:test.dat .

The file test.dat is situated in my home directory on banana and is copied to my
current directory on orange.

If I want to copy my Mail directory and its contents to orange into the directory
Mail.banana (again, from orange):

rcp -r banana:Mail Mail.banana

To preserve the time stamp I would type:

rcp -r -p banana:Mail Mail.banana

Making a remote copy from the machine apple where I have a different
account, apple:

rcp fred@apple:test.dat test

Of course, things also work the other way around. Here is a remote copy to
apple:

rcp test.dat fred@apple:test.dat

The last interesting thing would be a copy from apple to banana, while you're
logged into banana. Unfortunately, this works on every other machine except
my Linux machines:

rcp fred@apple:test.dat banana:test.dat

You see that rcp is a bit handier than ftp.

rlogin:

With rlogin you perform a remote login to another machine. It can be used
instead of telnet:

rlogin orange

or

rlogin -l fred apple

or

rlogin apple -l fred

(for some versions of Unix)

I integrate every machine in my window-menu with an rlogin. This makes login
very efficient. As an example, here are two descriptions—one for windows
manager fvwm and one for olvwm--to add a menu and a shortcut key for rlogin

to orange. The xhost can be omitted, but it is useful for other things. For fvwm:

Popup "Rlogin"
Title "Rlogin"
Exec "banana F1" xhost +banana;\
exec xterm -fn fixed -T banana -sb -e rlogin banana & EndPopup
Key F1 A N Exec "banana" xhost +banana;\
exec xterm -fn fixed -T banana -sb -e rlogin banana &

For olvwm:

"Login" MENU
"Rlogin" TITLE PIN
"banana" xhost +banana; exec xterm -T banana\
-sb -e rlogin banana
"Login" END

rsh:

The rsh command is the most powerful remote command, as it can be
integrated into a pipe. This enables you to execute complex command
sequences between different machines. Without any command, rsh rlogins to
the other machine. When I am logged into orange:

rsh banana
logs me remotely to banana, while:
rsh -l fred apple

does the same on apple, where the username is different from the one for my
current shell on orange.

Both stdout and stderr from the remote machine are piped to the local
machine. After establishing the connection, neither /etc/profile nor
.bash_profile (for bash) nor .login (for csh and tcsh) are scanned. This can be

confusing in the beginning, as not everything you defined as variables and
aliases for a login shell are present. This is different from rlogin, which gives
you a real “login shell”. The most common problem is that you use a command
that cannot be found because the path variable has not been set correctly. In
these cases, you could set your path in your shell initialization file, such as
.bashrc or .cshrc (there is no such file for /bin/sh, however). A more general
solution is to simply use fully qualified pathnames for commands.

The easiest use of rsh is a simple command like:

rsh banana ls

You should get a listing from your home directory on banana. If you want to
use options that start with “-”, the syntax would be:

rsh banana `ls -al'

Everything in between the quotes is executed on banana.

The listing was sent to your local stdout, your screen, just as if ls had been
executed locally (on orange). Below are some examples of creating a tar archive
on banana from a directory called bin, with the output going to stdout and the
archive file being placed on orange:

rsh banana `tar cf - bin' | dd of=archive.tar

or

rsh banana `tar cf - bin' > archive.tar

Of course this will work for different usernames or in the other direction too:

rsh -l fred apple `tar cf - bin' > archive.tar tar cf - bin | rsh -l
fred apple dd of=archive.tar

The dd command is very handy here, because it copies stdin to the file specified
by of. If I were to use > to redirect the output, I would end up on orange again,
but I want the file to be written to apple instead, which dd does correctly.

rsh Wizardry:

Now for some examples of what happens on which machine. Start with
something simple:

 ps -aux | grep root

This shows all processes root owns on your local machine. The next command
will show all processes on banana which are owned by root.

 rsh banana `ps -aux' | grep root

In this case, the ps command is executed on banana, but grep is executed
locally (on orange).

The next command does the same thing, except that the grep command is
executed on banana, as is the ps command.

rsh banana `ps -aux | grep root'

or

rsh banana `ps -aux' | rsh banana `grep root'

The next example shows how to split stderr and stdout (this works only for sh
or bash, not for csh or tcsh!):

 rsh banana `dd if=bin.tar 2>fehler' > test.dat

Here we have dd that writes its error output to the file fehler on banana, but
which transmits its standard output to orange into the file test.dat. The secret
here is the use of quotes. Because 2>fehler is inside the quotes it is executed
on banana. Things can get very tricky. Not only can you make full use of shell
commands, you also can run them on different machines:

rsh banana `tar xf bin.tar `rsh banana `tar tf \ bin.tar' | grep gj2.c`'

Here I have a tar archive bin.tar on banana. In it there is a file called usr/local/

src/gj2.c. First, there is a command expansion in between ` ... `. This expansion
returns all the filenames from the archive which contain the string “gj2.c”. First,
tar tf returns the list of files in the archive and then grep (running on orange)
performs the pattern match. This yields usr/local/src/gj2.c and usr/local/src/

gj2.c~. Now the first tar (tar xf bin.tar) extracts these files on banana.

Imagine that you have a tape drive attached to banana and another to orange.
You want to make a copy of a tape. Dumping the contents of the tape to the
disk drive and copying it back to another tape would be a solution, but would
require enough free disk space to hold the entire contents of the tape. Another
solution would look like:

rsh banana dd if=/dev/rst0 ibs=1024 | dd \
of=/dev/rmt0 obs=1024

Here /dev/rst0 is a SCSI tape drive on banana and /dev/rmt0a SCSI tape drive
on orange. Now you want to process your data with a special program called
demux. After processing, your data has shrunk considerably to about 200
megabytes. As we operate on binary data, porting our program to banana

would be very time consuming (orange is still my Linux machine). On the other
hand, orange doesn't have 200 megabytes of free space. We do the following:

rsh banana dd if=/dev/rst0 ibs=1024 | demux | \
rsh banana dd of=file.dat

Now we read from banana, process on orange and write back to banana.

In the next illustration you want to access a printer connected to banana. We
have a PostScript file, test.ps, that we want to send on a printer called p_a4:

dd if=test.ps | rsh banana `lpr -Pp_a4'

You might want to have a look at the file before you print it:

dd if=test.ps | rsh banana `xv - -display orange:0'

This will only work under X-windows. On orange, you would have given a
command like xhost +banana first.

Problems:

Apart from the fact that some of the above examples probably will not run
under some configurations, I have encountered some strange behavior.
Consider we have, as in the previous examples, two identical files: bin.tar on
banana and bin.tar on orange. Now I try on orange:

ls | grep bin

The response is bin.tar. The same goes for:

rsh banana ls | grep bin

but the next one chokes:

ls | rsh banana grep bin

Piping files into a remote shell with the command dd, though, has never
choked.

Conclusion:

With the help of these commands, getting connected to other machines is
made considerably easier. The rcp and rlogin commands can be almost fully
substituted for commands such as ftp and telnet on your local network. Not
only can you access your accounts, you might also allow other trusted users to
access your accounts by means of the .rhosts file.

Finally, the rsh command enables you to generate data streams through
several different machines, accessing local disk and tape drives (or anything
else you are allowed to access).

Jens Hartmann (hartmann@dkrz.d400.de) is a geophysicist at the University of
Hamburg, where he uses Linux for his work.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:hartmann@dkrz.d400.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Development Grant Fund

LJ Staff

Issue #9, January 1995

Linux International has announced the formation of the Linux Development
Grant Fund, an international fund designed to both promote development for
Linux by awarding grants to Linux developers and to give Linux users a way to
support Linux development in an organized and efficient fashion. Everybody
wins as Linux International creates a grant fund to both promote development
and to offer users a way to support that development.

Linux International has announced the formation of the Linux Development
Grant Fund, an international fund designed to both promote development for
Linux by awarding grants to Linux developers and to give Linux users a way to
support Linux development in an organized and efficient fashion.

Everybody wins as Linux International creates a grant fund to both promote
development and to offer Linux users a way to support that development.

by Linux Journal Staff

Linux International is a worldwide, non-profit organization devoted to
promoting Linux development and growth in the international marketplace.
The organization has branches in several countries on most continents and,
because of this structure, it is able to efficiently collect donations and distribute
monies to individual developers with less overhead than if the money came
from individual personal contributions. All 100 percent of the monies donated
to the fund will be given out in the form of grants; Linux International will not
retain any portion of the funds for administrative expenses.

By collecting the funds and then converting many donations at once, a smaller
portion of the funds will be lost to currency conversion fees than if the
donations were made separately to developers. This is especially important for
smaller donations given from one person to someone else with a different local

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

currency; currency conversion carries a fixed rate of about $7 to $15
(sometimes higher), and it can be difficult to do without a cooperative bank.

How will developers be selected to receive grants? Anyone developing free
software for Linux with a specific need for funds to further development (for
instance, to purchase hardware or documentation) may submit a request.
Developers and potential developers can receive information on submitting
grant proposals by sending e-mail to grant-submissions-info@li.org. If you do
not have e-mail access, send paper mail or a fax to Linux International at the
address below.

Who decides who will receive a grant? The Grant Fund is controlled by a board
of three members appointed in a more-or-less democratic manner. The board
members will each serve one-year terms. The first board members are well-
known in the Linux community: Matt Welsh, Ian Murdock, and Michael K.
Johnson.

All of the grants awarded will be announced in the comp.os.linux.announce
newsgroup. Additionally, a list of all the donors, except for those who choose to
remain anonymous, will be published periodically. (A single check-mark on the
donation form is sufficient for donors who choose to remain anonymous.)

Donations may be made by credit card, international money order or check and
may be sent by paper mail, e-mail or fax. If you wish to send your credit card
number via e-mail, you will probably wish to encrypt it with PGP to avoid fraud.
Linux International's PGP public key is available by fingering donations@li.org.

Donations to the Grant Fund can be made in almost any currency. However, to
avoid excess currency conversion costs, US dollars, Deutsch marks, Pounds
Sterling, or Australian dollars are preferred. However, do not send cash
through the mail—it is not likely to arrive.

E-mail donations may be sent to donations@li.org, fax donations to +61 9 331
2443 in Australia or (203) 454-2582 in the US, and paper mail donations to
Linux Development Grant Fund, c/o Linux International, P.O. Box 80, Hamilton
Hill, WA, Australia, 6163.

A form for donating may be requested by sending e-mail to donations-
info@li.org; one will be sent to you by return mail.

Because of very complex national laws determining charitable organizations,
donations to the Grant Fund are not tax exempt at this time. However,
businesses may count donations as business expenses in many countries;
consult your local tax experts for details.

If you have any comments or questions about the fund, you may send them to
donation-comments@li.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux System Administration

Mark Komarinski

Issue #9, January 1995

Got that sinking feeling that often follows an overzealous rm? Our system
doctor has prescription.

There was recently a bit of traffic on the Usenet newsgroups about the need for
(or lack of) an undelete command for Linux. If you were to type rm * tmp

instead of rm *tmp and such a command were available, you could quickly
recover your files.

The main problem with this idea from a filesystem standpoint involves the
differences between the way DOS handles its filesystems and the way Linux
handles its filesystems.

Let's look at how DOS handles its filesystems. When DOS writes a file to a hard
drive (or a floppy drive) it begins by finding the first block that is marked “free”
in the File Allocation Table (FAT). Data is written to that block, the next free
block is searched for and written to, and so on until the file has been
completely written. The problem with this approach is that the file can be in
blocks that are scattered all over the drive. This scattering is known as
fragmentation and can seriously degrade your filesystem's performance,
because now the hard drive has to look all over the place for file fragments.
When files are deleted, the space is marked “free” in the FAT and the blocks can
be used by another file.

The good thing about this is that, if you delete a file that is out near the end of
your drive, the data in those blocks may not be overwritten for months. In this
case, it is likely that you will be able to get your data back for a reasonable
amount of time afterwards.

Linux (actually, the second extended filesystem that is almost universally used
under Linux) is slightly smarter in its approach to fragmentation. It uses several
techniques to reduce fragmentation, involving segmenting the filesystem into

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

independently-managed groups, temporarily reserving large chunks of
contiguous space for files, and starting the search for new blocks to be added
to a file from the current end of the file, rather than from the start of the
filesystem. This greatly decreases fragmentation and makes file access much
faster. The only case in which significant fragmentation occurs is when large
files are written to an almost-full filesystem, because the filesystem is probably
left with lots of free spaces too small to tuck files into nicely.

Because of this policy for finding empty blocks for files, when a file is deleted,
the (probably large) contiguous space it occupied becomes a likely place for
new files to be written. Also, because Linux is a multi-user, multitasking
operating system, there is often more file-creating activity going on than under
DOS, which means that those empty spaces where files used to be are more
likely to be used for new files. “Undeleteability” has been traded off for a very
fast filesystem that normally never needs to be defragmented.

The easiest answer to the problem is to put something in the filesystem that
says a file was just deleted, but there are four problems with this approach:

1. You would need to write a new filesystem or modify a current one (i.e.
hack the kernel).

2. How long should a file be marked “deleted”?
3. What happens when a hard drive is filled with files that are “deleted”?
4. What kind of performance loss and fragmentation will occur when files

have to be written around “deleted” space?

Each of these questions can be answered and worked around. If you want to do
it, go right ahead and try—the ext2 filesystem has space reserved to help you.
But I have some solutions that require zero lines of C source code.

I have two similar solutions, and your job as a system administrator is to
determine which method is best for you. The first method is a user-by-user no-
root-needed approach, and the other is a system-wide approach implemented
by root for all (or almost all) users.

The user-by-user approach can be done by anyone with shell access and it
doesn't require root privileges, only a few changes to your .profile and .login or
.bashrc files and a bit of drive space. The idea is that you alias the rm command
to move the files to another directory. Then, when you log in the next time,
those files that were moved are purged from the filesystem using the real /bin/

rm command. Because the files are not actually deleted by the user, they are
accessible until the next login. If you're using the bash shell, add this to your
.bashrc file:

alias waste='/bin/rm'
alias rm='mv $1 ~/.rm'

and in your

.profile:
if [-x ~/.rm];
 then
 /bin/rm -r ~/.rm
 mkdir ~/.rm
 chmod og-r ~/.rm
 else
 mkdir ~/.rm
 chmod og-r ~/.rm
 fi

Advantages:

• can be done by any user
• only takes up user space
• /bin/rm is still available as the command waste
• automatically gets rid of old files every time you log in.

Disadvantages:

• takes up filesystem space (bad if you have a quota)
• not easy to implement for many users at once
• files get deleted each login (bad if you log in twice at the same time)

System-Wide

The second method is similar to the user-by-user method, but everything is
done in /etc/profile and cron entries. The /etc/profile entries do almost the
same job as above, and the cron entry removes all the old files every night. The
other big change is that deleted files are stored in /tmp before they are
removed, so this will not create a problem for users with quotas on their home
directories.

The cron daemon (or crond) is a program set up to execute commands at a
specified time. These are usually frequently-repeated tasks, such as doing
nightly backups or dialing into a SLIP server to get mail every half-hour. Adding
an entry requires a bit of work. This is because the user has a crontab file
associated with him which lists tasks that the crond program has to perform.
To get a list of what crond already knows about, use the crontab -l command,
for “list the current cron tasks”. To set new cron tasks, you have to use the
crontab <file command for “read in cron assignments from this file”. As you
can see, the best way to add a new cron task is to take the list from crontab -l,
edit it to suit your needs, and use crontab <file to submit the modified list. It
will look something like this:

~# crontab -l > cron.fil
~# vi cron.fil

To add the necessary cron entry, just type the commands above as root and go
to the end of the cron.fil file. Add the following lines:

Automatically remove files from the
/tmp/.rm directory that haven't been
accessed in the last week.
0 0 * * * find /tmp/.rm -atime +7 -exec /bin/rm {} \;

Then type:

~# crontab cron.fil

Of course, you can change -atime +7 to -atime +1 if you want to delete files
every day; it depends on how much space you have and how much room you
want to give your users.

Now, in your /etc/profile (as root):

if [-n "$BASH" == ""] ;
then # we must be running bash
 alias waste='/bin/rm'
 alias rm='mv $1 /tmp/.rm/"$LOGIN"'
 undelete () {
 if [-e /tmp/.rm/"$LOGIN"/$1] ; then
 cp /tmp/.rm/"$LOGIN"/$1 .
 else
 echo "$1 not available"
 fi
 } if [-n -e /tmp/.rm/"$LOGIN"] ;
 then
 mkdir /tmp/.rm/"$LOGIN"
 chmod og-rwx /tmp/.rm/"$LOGIN"
 fi
fi

Once you restart cron and your users log in, your new `undelete' is ready to go
for all users running bash. You can construct a similar mechanism for users
using csh, tcsh, ksh, zsh, pdksh, or whatever other shells you use. Alternately, if
all your users have /usr/bin in their paths ahead of /bin, you can make a shell
script called /usr/bin/rm which does essentially the same thing as the alias
above, and create an undelete shell script as well. The advantage of doing this
is that it is easier to do complete error checking, which is not done here.

Advantages:

• one change affects all (or most) users
• files stay longer than the first method
• does not take up user's file space

Disadvantages:

• some users may not want this feature
• can take up a lot of space in /tmp, especially if users delete a lot of files

These solutions will work for simple use. More demanding users may want a
more complete solution, and there are many ways to implement these. If you
implement a very elegant solution, consider packaging it for general use, and
send me an e-mail message about it so that I can tell everyone about it here.

Tar Tips

And, as a last-minute correction/addition to a previous article (specifically my
article on mtools in LJ issue 5), an alert reader noticed that while mtools can
copy Unix files to a DOS diskette, how can you preserve the 256 character
name of the original Unix file if DOS can only handle 11 characters at most, and
is not case-sensitive? The case was one in which two Unix machines could use
DOS diskettes, but could not communicate directly. However, this can apply to
backups in which you want your files stored on DOS floppies, or to any other
case in which you want long file names preserved. There is a way to do it.

The tar command is used to create one big file which can contain a number of
little files. Using the tar command, you can create an archive file which contains
a bunch of 256 character file names, while the tar file itself is a legal DOS name.
DOS (or the FAT filesystem, anyway) does not care what is in the file, as long as
it has at most eight characters plus a three character extension.

Be sure that when you copy the tar file that you do not give the -t (text) option
to mtools. The tar file has to be copied in binary format, even if the tar file only
contains text files.

So, to copy a few long filenames to the first floppy drive (A: or /dev/fd0):

tar -cvf file.tar longfilename \
reallylongfilename \ Not.In.Dos.Format.Filename.9999 /
mcopy file.tar a:

Then at the remote Unix machine (or to restore it):

mcopy a:file.tar file.tar
tar -xvf file.tar

or

mread a:file.tar | tar -xf -

And assuming the remote Unix system has mtools and supports 256 character
filenames, a copy of the files will now be on each system.

Tune in next time when I find the real relationships between virtual beer,
BogoMIPS, and a VIC-20. In the meantime, please send me your comments or
questions or even suggestions for future articles to: komarimf@
craft.camp.clarkson.edu.

Mark Komarinski (komarimf@craft.camp.clarkson.edu) graduated from
Clarkson University (in very cold Potsdam, New York) with a degree in computer
science and technical communication. He now lives in Troy, New York, and
spends much of his free time working for the Department of Veterans Affairs
where he is a programmer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:komarimf@craft.camp.clarkson.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Unix Systems for Modern Architectures

Randolph Bentson

Issue #9, January 1995

Understanding the subtleties of hardware-cache-bus-memory interactions is an
essential component of “doing” a kernel for a multiprocessor system.

Book Review

Unix Systems for Modern Architectures

Author: Curt Schimmel

Publisher: Addison-Wesley

ISBN: 0-201-63338-8

Reviewer: Randolph Bentson (bentson@grieg.seaslug.org)

“What is involved in a multiprocessor version of Linux?” has almost become a
“Frequently Asked Question” in the Linux newsgroups. The answer is contained
in Curt Schimmel's UNIX Systems for Modern Architectures.

Schimmel can speak from experience on this topic. He worked on Unix systems
at AT&T Bell Laboratories and at Silicon Graphics, Inc., and has offered tutorials
on symmetric multiprocessor Unix systems at USENIX and UKUUG. This book is
an outgrowth of those tutorials.

At first glance, the book seems to offer too much detail about hardware for a
programmer. But as one proceeds, one sees that understanding the subtleties
of hardware-cache-bus-memory interactions is an essential component of
“doing” a kernel for a multiprocessor system.

After a brief (17 page) description of Unix processes, another 130 pages are
devoted to discussing uniprocessor cache systems. I was surprised and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

delighted to find out how hard it can be to get the right results. Fortunately,
folks do seem to have done this right on the systems I've used.

With this foundation well established, the remainder of the book deals with the
new domain of multiprocessor systems.

The keys to any such system are protecting shared data and efficient
interprocess communication. Mutual exclusion mechanisms are cast in three
forms - short term, medium term, and long term. We are shown how
uniprocessor implementations of Unix depended on a single-threaded kernel
and interrupt masking to protect shared data and, more importantly, we are
shown how these methods are inappropriate for a multiprocessor system.

Schimmel shows how one can build locks for all three levels of mutual
exclusion (and points out where they are needed in a typical Unix kernel).
Although the master/slave scheme is straightforward to implement, it has
much the flavor (and bottlenecks) of a uniprocessor system. The more
promising symmetric multiprocessor scheme is not as easy to do correctly. The
essence of the problem is finding the right granularity (or size) for the critical
sections. Granularity that is either too large or too small can harm system
performance. We are shown the analysis that leads to good designs.

The book concludes with more memory access and caching issues - this time
with multi-processor systems. Some recent RISC chips have memory models
which allow for stores and loads to be re-ordered from what the programmer
intended, in order to gain performance. We are shown how RISC chips have
mechanisms to force the correct results for implementing locks and accessing
data in critical sections. Even when memory requests are issued in the order
they were programmed, cache consistency is a serious issue in multiprocessor
systems. The final chapters of the book address the interactions that must be
dealt with by a serious system designer.

This book is written as a textbook, with questions and references at the end of
each chapter. Selected questions have answers provided in an appendix.
Another appendex summarizes a dozen popular chips found in Unix systems.

Randolph Bentson can be reached at: (bentson@grieg.seaslug.org)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bentson@grieg.seaslug.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #9, January 1995

Readers sound off.

Who's Counting?

Thanks for this superb magazine. I'd find it very informative if you could start a
counter for important and/or interesting applications—both commercial and
not—that have been ported to Linux. A compact layout might include one line
per application: name and a short description of what it does. Also, articles
about windows emulation and WWW are very welcome! Cheers, —Veli-Pekka
Pulkkinenvpp@vipunen.hut.fi

LJ responds:

As far as non-commercial applications, almost everything has been ported—far
too much to include in a counter in a small magazine. Most of the commercial
apps that have been ported now advertise in Linux Journal, so a counter for
them would be redundant.

Some day, we might be able to provide something like this. We would need to
be a larger magazine (more pages) and have a clearer vision of what would be
listed and what not.

We will try to keep occasional progress reports about Wine coming, and we
arranged for Bob Amstadt, the head of the Wine project, to speak last month at
the Open Systems World Linux Conference, as well.

Hacker's OS

I have been running the Slackware Pro 2.0 distribution at home now for about a
month, and I LOVE Linux! It is a fast, well-thought-out OS. Linux Journal is
undoubtedly the most useful, well-written magazine I have EVER subscribed to.
I look forward to each new issue and read it many times. It's great to have a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

hacker's OS, instead of being forced into MS-DOS or MS-Windows. —Stephen E.
Farlowsefarlow@crl.com KJ5YN

ez = ?

Terry Gleidt's articles on AUIS in LJ (issue #4) got me interested in ez, and I think
it's great, but I can't get the equation editor to print equations properly. I'm
using the auis63L1-wp package from sunsite with Slackware 2.0, including groff
1.09 and ghostscript 3.01 but the equations look like they have skipped a
formatter, and the program won't convert them to other formats. y=x^2 comes
out like this:

delim##define above "to" define below "from" define zilch "" define ...
#y=x sup[2]#delim off

How can I fix this?

Also, the help file mentions a “chart” program that isn't included. Where can I
find this? —David Jacksonjackson@cfn.cs.dal.ca

Terry responds:

In /usr/andrew/README* it says:“If you print/preview equations, you should
modify /usr/andrew/etc/{atkprint ,atkpreview} so that geqn and gtbl are
invoked. See the comments in [those shell scripts] for more details.”

Hope this helps. If you have more questions, drop me some mail. —Terry
Gliedttpg@mr.net

LJ responds, too:

Although this bug is probably fixed in a newer release of Terry's AUIS packages,
I noticed that it exists with the package I have, as well. Try (as root, or some
other user with write permissions in /usr/ andrew): cd /usr/andrew/ bin; ln -s

runapp chart which worked for me.

Stop: You're Making Us Blush

I received in the mail today my seventh issue of Linux Journal. Thank you for
providing the Linux community with such a fine publication. I started running
Linux on a 486DX33 machine just about one year ago. At that time, I was very
new to Unix and Un*x-like operating systems. However, over the past 12
months, I've installed and configured several Linux machines, learning more
each time than I knew before. I'm now very comfortable administering my own
system, as well as offering advice to people who are just starting out with an
advanced OS.

Fortunately for me, I subscribed to LJ well before the first issue went to press. I
say “fortunately” because your publication has provided me with timely advice
and guidance. In fact, I am in your debt for publishing such clear, concise, and
pertinent Linux-specific information as that which appears in Clarence Smith's
article, “Linux Performance Tuning for the Faint of Heart” (issue #7). Please
keep up the good, practical job you are doing.

Moreover, it has been a real joy watching LJ develop. I'm eager to see where the
next 9 issues will take all of us. —Louis Dehnerlouis@winter.net.com

Debugging the Printer

I am a regular reader of this wonderful journal. I would like to read some
articles on printing, specifically, with the following items: 1) a minimal working
printcap for a single machine with a printer and a client machine of a Linux
print server; 2) filters for text and postscript files; 3) notes on obvious bugs, if
any (for example, when the printer is on everything works fine, but when the
printer is off, the print queue empties as if lpd is sending the files through the
printer port); and 4) where to find the latest lp stuff. —Genaldo L.
Nunesnunes@mtm.ufsc.br

LJ responds:

We have an author who is currently writing an article on printing, although we
haven't scheduled it for print yet.

Correction

In the December issue of Linux Journal, the address of Linux International was
given as info@li.org.au. This has now been changed to info@li.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What We've Been Up To

Michael K. Johnson

Issue #9, January 1995

Our greatest improvements will come from our readers.

For several issues, I have sacrificed the space reserved for this column to
include more interesting and useful articles, but it is time to give you an update
on what is happening at Linux Journal.

Despite several setbacks, including my computer dying, LJ has improved over
the past few months, as we are told over and over again in letters to the editor.
However, we see much more room for improvement—and the more
subscribers we have, the faster we are able to improve. Our thanks to all our
subscribers!

Our greatest improvements will come from our readers. There is only so much
that we can write; you, our readers, use Linux for things that we haven't
thought of yet. In this issue, for instance, you'll read how Vance Petree at
Virgina Power has implemented a system for managing large amounts of data
using Linux systems (see page 23). In our September issue, Greg Wettstein
wrote about using Linux to manage patient care for a large cancer research
center. It is our policy to print at least one article each month about how Linux
is being used in the real world, but we are dependent on you, our readers, to
keep us informed.

What We've Been Up To

We have hired several new staff members to process all our new subscription
orders and to spend more time editing the articles. We have designed short
monthly features with useful information, including ftp sites where information
about Linux is available. Over the last few issues, we have instituted a policy of
including a guide to available applicable resources of all types (including
Internet sites, WWW URLs, and books) with most articles. We are now in the
process of publishing a book called The Linux Sampler, filled with a mix of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

articles from Linux Journal, with sections on Linux history, systems
administration, resources, and real world applications.

We exhibited at Unix Expo, as was covered in last month's Linux Journal, and
helped make technical contacts between Linux developers and hardware and
software vendors interested in Linux. We sponsored a two-day Linux
Conference at Open Systems World in December, which included several short
classes on a variety of topics and one full-day tutorial introduction to Linux.

Also, we like having fun with Linux just as much as the rest of you do. Many of
you have seen our “My Other Computer Is a Linux System” stickers and t-shirts;
we are now offering a Linux bumpersticker, and we sell other Linux-related
products through our catalog. If you have other ideas for fun Linux-related
items, feel free to send them to info@linuxjournal.com.

Michael K. Johnson is the editor of Linux Journal, and is also the author of the
Linux Kernel Hackers' Guide (the KHG).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Looking into the Future

Phil Hughes

Issue #9, January 1995

As I write this in mid-November and look back on 1994, I see some amazing
happenings in the computing field—and most of the amazement has to do with
Linux itself.

Here are a few examples:

• Decus invites Linus to speak at their conference in New Orleans.
• The Australian Unix Users' Group invites Linus to speak at their annual

meeting.

• Linux Journal has a booth at Unix Expo and gives out 3,000 copies of the
magazine.

• PC Week names Linux as software Product of the Week.
• Rumors are that HP, IBM, and other big names are using Linux internally.
• I went into three mainstream computer stores and said I was looking for a

laptop to run Linux. One store didn't know what I was talking about.
Another suggested a particular system because it had a larger hard disk
which would be good for Linux. The other told me that the laptop they
sold didn't run Linux (they had tried it), but suggested another brand that
did.

• Companies such as the Roger Maris Cancer Center and Virginia Power
port applications from commercial operating systems to Linux and explain
that they did it because they needed something “better”.

• Open Systems World, in its sixth year as a Washington, DC, based trade
show decides to have a Linux Conference right along with the SCO and
Solaris conferences.

• Unix Expo contacts Linux Journal about doing a Linux section at their New
York show in 1995.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Why is this amazing?

Because these aren't “Linux events”, these are cases of the “real world” showing
an interest in Linux. At the beginning of the year, mainstream computing hadn't
even heard of Linux. At Uniforum in March, Linux Journal had a booth.
Although the booth was very popular, the most common question was “What is
Linux?” Today people seem more likely to ask “Why should I run Linux?”, and
then actually listen to the answer.

Now comes the assignment. If we want people to take us seriously we need to
give good answers. Yes, Linux is a fun “hacker” system. But some of these
people want to do real work. We need to listen to their needs and either
explain how Linux can meet those needs or, if it can't, tell everyone who is
interested in development what these people are looking for.

And this is where Linux Journal can help. Let us know what people are asking
for and we'll help get the word out.

To start off this effort, here is an idea I am working on—a Linux-based “freenet”
system. For those of you not familiar with a freenet, it is a public-access
computer system designed to offer communications within a local community.
Access is free, users are generally not computer oriented and much of the
information on the system is supplied by local volunteers.

Current freenet software has a lot of shortcomings which include being
inefficient, not particularly user-friendly and generally running on expensive
hardware. Combining the openness and capabilities of Linux with this
movement could offer a much better starting point for these freenet projects.
And implementing a freenet on Linux could help us spread the word on how
useful Linux can be.

In future issues of Linux Journal I want to explore the current limitations and
see what Linux can offer in the way of a good base for the freenet of the future.
Again, your input is welcome. If you want to get involved, write me via Linux
Journal or e-mail info@linuxjournal.com.

Phil Hughes is the publisher of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Virginia Power—Linux Hard at Work

Vance Petree

Issue #9, January 1995

This is a story of Linux in the Real World—a tale rife with adventure and
suspense, brimming with excitement and sacrifice and drama and—well,
maybe not all of those things. But it is a story of the considerable (and ongoing)
success of Linux in an area that affects just about all of us: electric power. And
as for the suspense and excitement—well, you'll see. But first we need a little
background, and then we'll set the scene.

I'm a programmer for Virginia Power, an electric utility that serves about two
million customers in much of Virginia and a small part of Northeastern North
Carolina. Virginia Power's service territory is partitioned into five divisions:
Northern, Southern, Eastern, Western, and Central. Among the responsibilities
of the Operations Services group in which I work is the maintenance of a
centralized archive database of 30-minute averages of all analog values which
are retrieved by SCADA master computers located in each division. This
averaged data is of great importance to system planners and load forecasters,
and is vital when planning large construction projects which may cost millions
of dollars. Processing all of this data is a demanding task, but Linux has saved
the day.

A few words of explanation for those of you who are not power system
aficionados: SCADA is an acronym for Supervisory Control And Data
Acquisition, which basically means the retrieval of real-time analog and status
data from various locations in the service territory through remote terminal
units (RTUs) installed in substations. This information is obtained over
dedicated communications lines by central master computers, where it is
stored, analyzed, and presented to operations personnel who make sure the
lights stay on, and who get very busy when the lights aren't on. These system
operators (as they're called) can also remotely operate field devices like line
breakers and capacitor banks when necessary (this is the Supervisory Control
part of SCADA); the master computers even contain several feedback

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

algorithms which can automatically operate devices based on system
conditions.

Virginia Power has another SCADA system which monitors the entire power
grid and also provides automatic feedback control to the generation stations;
this is called the Energy Management System, or EMS. And in case you're
wondering: yes, the EMS retrieves analog values just like the division
computers. Yes, we archive them into our central database. And yes, Linux has
saved the day here as well.

Also scattered throughout the service territory are scores of intelligent
electronic devices such as digital megawatt-hour meters, data recorders, fault
detecting relays, and line tension monitors, which are not directly tied into the
SCADA systems, but which must periodically be dialed into over the public
phone network to obtain data for use not only by system operators, planners,
and engineers, but by folks in the accounting department as well. You guessed
it—Linux has saved the day in this area, too!

That should be enough background to get us started; now comes the scene as
it existed when I joined the Operations Services group in late 1992:

Averaged analog data was dumped by the division SCADA computers every 15
minutes over dedicated serial lines to redundant PDP 11/84 computers located
in our local computer room; these machines strained (and frequently failed) to
process all the information being shovelled at them. Averaged analogs from the
EMS system were dumped every 6 hours to a MicroVAX over a serial DECnet
link which, due to internal security concerns, could only be activated when a
transfer was to take place. Another computer, an IBM PS/2 model 60 running
some of the most odious commercial software I have ever seen (which will
remain nameless; it's not polite to insult the dead), slogged through dialing as
many digital meters and recorders as possible, one at a time, over a single
phone line.

Once a day in the early morning hours, all of the previous day's information
from the PDPs, the MicroVAX, and the PS/2 was masticated in an orgy of
sorting, calculating, merging, interpolating, and updating, and finally reduced to
a set of 30-minute averages which were then shipped over DECnet to our main
archive system (a VAX 4000) and merged into the master database. Whew! I
was caught up in other projects at the time, but in my spare moments I looked
into the scraps of code for this system—all I remember of those encounters are
shudders, cold sweats, and endless nightmares of Fortran source.

Enter the first hero of our tale: Joel Fischer, engineer and technical evangelist
extraordinaire, a believer in the true potential of microprocessor-based

computers, and a Unix initiate—something of a rarity at a utility company.
(Most companies, as I sure all of you know, develop a dominant computer
philosophy which tends to color any approaches to a problem. At many utility
companies, the official watchwords are often IBM Mainframes, VAXes running
VMS, PCs running DOS or Windows or Novell. Very little TCP/IP. And very little
Unix.)

Joel joined our group in early 1993. His primary responsibility was maintenance
of the averaged analog database system. After a short time of dealing with
balky PDPs, uncooperative PS/2s, and temperamental MicroVAXes, he began to
share my conviction that there had to be a better way to process all of our
incoming data.

And so began a series of productive and energizing “cubicle chats”. Joel would
drop by my cubicle with some ideas on how to improve the system, and I would
reciprocate with some ideas on his ideas, and so on. Our group is something of
a skunk works anyhow, so this low-overhead approach to problem solving was
a well-established principle. Joel was much more familiar than I with our
company's network, and informed me of two important facts: Our enterprise
backbone reached all division offices except the Western division, and all of our
routers were native TCP/IP—despite the fact that TCP/IP wasn't used by more
than a handful of special-purpose systems.

Well, well, well. By the most serendipitous of circumstances, I was at that same
time looking into Linux on my home system, and I was impressed enough that I
waxed somewhat evangelical myself. I had been the Minix and Coherent route,
and I was no stranger to GNU and the FSF; we were running gcc and Emacs on
our VAX 4000.

It had taken me exactly one evening at home to realize that Linux was a Good
Thing. A few weeks of use and my software intuition (I'd like to think that 18
years of programming has been good for something) told me that Linux was a
Very Good Thing Indeed. So I cleared off a disk partition on my machine at work
and installed Linux, to demonstrate that it could do the things I claimed it could.
Conversations with visitors to my cubicle followed this general pattern:

“Hey, what's that?”

“Linux, a copylefted Unix clone...” I gave a short speech on free software and
the many advantages thereof. But you already know all of that.

“Huh? Will it do (fill in the blank)?”

“Sure.” Clickety-clack on the keys. “There you go.”

(And when I fired up X-windows—oh, my!)

Figure 1. AMC Dialing Subsystem

Gradually, the design of a new, distributed data gathering system took shape.
We could install a PC in each of the division computer centers to receive the
averaged analog data from the SCADA master computer and dial all of the field
devices (meters, relays, etc.) in that division. A machine in our central office
would receive a duplicate data feed from the division SCADA computers to
provide data redundancy, and serve as a backup dialing system. All of these PC
systems could be linked together over the corporate network with TCP/IP
(except for Western division, where we could use UUCP). Vax connectivity was
something of a problem, but we settled on a high-speed dedicated serial link
with a simple file transfer protocol.

Of course, it wasn't all smooth sailing. We had our detractors, who questioned
the idea of using personal computers to replace minicomputers. How could we
be sure a PC was powerful enough to process all of the incoming data and dial
remote devices and handle networking? And what about all of the software we
would need to develop in-house? Protocol translators to talk to all of the
remote devices? Software to do data translation and reduction into a format
suitable for submission to our VAX database system? (All valid concerns,
certainly. Many discussions with our “devil's advocates” were invaluable in
helping to hammer out the gritty details of our system and provide the best
answer of all: working, reliable software!)

Enter the second hero in our tale: Lynn Lough, our supervisor. She knew how
important this data was to efficient company operations and planning, and she
understood the need for a reliable, redundant retrieval system. Joel and I
presented our proposed system. Hardware costs: the price of six 486/66 PCs
with healthy doses of RAM and disk space. Software costs: zip. (Well, not
exactly. Don't forget all of the in-house software we needed to develop. But you
get the idea.)

We explained to her the underlying philosophies of the Free Software
Foundation; how free did not always signify bad, but often meant better—
because the software was not shoved out the door to meet some arbitrary
marketing deadline, but was released in an environment of continual
refinement and improvement, where hundreds of the sharpest software minds
anywhere (that's you, folks!) would provide feedback. Besides, with all of the
source code for everything, we would never be at the mercy of a vendor who
decided to drop support for a particular piece of software, or who only fixed a
bug by upgrading and charging a princely sum for the upgrade.

https://secure2.linuxjournal.com/ljarchive/LJ/009/1005f1.jpg

Lynn weighed all the pros and cons. She must have seen the fervor in our eyes,
because she made the single most fateful decision in our entire story: She said
yes.

Yow! Within weeks, by mid-August, we had 6 dandy new PCs in our computer
room. As the primary coder for our project (actually, because we were a little
short-handed, I was the only coder), I rolled up my virtual sleeves and dove in.

(And after a year of developing code for Linux, I'll say one thing loud and clear:
I'd crawl over an acre of 'Visual This++' and 'Integrated Development That' to
get to gcc, Emacs, and gdb. Thank you. Back to our story.)

Our first step was to choose a kernel which provided all of the services we
needed—nothing exotic, just solid networking and System V-type IPC
primitives. We settled on 0.99.13s. We purchased 8-port serial boards to give us
10 serial ports per PC. A few quick changes to serial.c to support the board
(impossible without access to the source code, I repeated ad infinitum to
anyone who would listen) and we had our base system. As soon as I have a
breather, I'd like to post the patches for the serial board we're using: an Omega
COMM-8 which provides individually-selectable IRQs for each port. In the
meantime, please e-mail me if you're interested.

Our next step was to replace the ailing PDPs as quickly as possible, since their
unreliability was resulting in lost data. We already had dual data feeds.
(Actually, data from each division came in over a single serial line and was split
off at the back end of the modem, so we didn't really have redundant data
input; that was one of the weaknesses our system was designed to rectify.) We
decided to take two of our PCs and temporarily configure them as plug-in
replacements for the PDPs. To accomplish this, we had to be able to accept
input data in its current form (for various reasons, the division master
computers couldn't be changed to modify the way they sent the averaged data
to us), reduce it to database input format, and move it to the database VAX.

I took the Unix toolkit philosophy to heart, and instead of a big blob program to
do Absolutely Everything, I wrote a set of small utilities, each of which did one
thing and one thing only. For run-time modifications I used small configuration
text files, and for interprocess communications (where necessary) I used
message queues.

Pretty soon, I had an input daemon that hung on the serial lines watching for
data, a checker program that made sure we got our quarter-hour files in a
timely fashion and verified the points they contained, an averager that
calculated 30-minute average files, a builder that built a database submission
file hourly, and a PC-to-VAX daemon that implemented a simple transfer

protocol over a high-speed serial line. (Of course, this last program required a
corresponding daemon on the VAX side, which meant a foray into VMS-land.
Good thing I had gcc and Emacs over there!)

By the third week of October we were ready for a trial run. We halted one of the
PDPs, moved the data input lines over to our PC, and booted Linux. Within 15
minutes, our next cycle of averaged data had been sent, and tucked safely away
on our PC's hard drive were 5 of the most wonderful data files I had ever seen:
an input file from each division, every byte present and accounted for. Within
30 minutes, we had our first calculated average file. Within an hour, we had our
first database transfer file, neatly deposited in a spooling directory where
eventually it would make its way to the VAX.

I didn't get much sleep that night. Logged in from home, I watched each data
cycle come in with the sort of anticipation usually reserved for really good
science fiction movies. Of course, I had tested all of this software beforehand,
but seeing it work with real data in real time was more exciting than I care to
admit.

After this milestone, events moved pretty quickly. By the beginning of
November, the remaining PDP was relegated to backup status, and our PC was
the primary data source for our archive database. By the end of the year, that
PDP was gone as well; a second PC would serve as our backup machine while
we installed our PCs in the division operating centers.

Over the next several months, as our PCs gradually migrated out to their
permanent homes in the division SCADA master computer centers, I turned my
efforts to meeting our intelligent device dialing needs—remember all of those
megawatt-hour meters, data recorders, and so on requiring periodic polling?
More code to develop—just my cup of tea!

To meet our current requirements, as well as provide for future dialing needs, I
designed a general-purpose dialing system which could connect to just about
any device with a modem and a byte oriented communications protocol.
Requests to dial devices are posted to a message queue; a daemon process
manages all the phone lines allocated to device dialing. When a request comes
in on the message queue, the dial-up manager allocates a phone line, forks a
copy of itself to handle the chores of dialing and connecting to the device, and
once a connection is established, execs the appropriate protocol task to
actually talk to the remote device. When the protocol process terminates, the
parent dial-up manager recycles the available phone line for any further dial
requests. If there are more dialing requests than available phone lines, the dial-
up manager maintains an internal queue with all the usual timeouts, etc.

Figure 2. Linux-Based Data Retrieval System

This dial-up manager scheme should sound pretty familiar—it was inspired by
the inetd superserver. Now what was that quote by Newton about standing on
the shoulders of giants...?

I won't go into the fascinating and esoteric details of writing protocol tasks for
the various devices we interrogate. So far, we've developed protocol tasks to
talk to half a dozen different types of devices, with more on the way. At last
count, our Linux PCs dial nearly a hundred separate devices on a regular basis.

Our story has pretty much reached the present day, and the sailing has gotten
smoother and smoother. We've installed a TCP/IP stack on our VAX database
machine, so connectivity with our Linux machines is easier than ever. We've
installed a sixth remote Linux machine in our System Operations Center (that's
the EMS system mentioned at the beginning of our tale) to take care of
retrieving EMS averaged analogs, along with handling some dialing
requirements for that department. And we're currently developing a virtual
dial-up SCADA system to supplement our SCADA Master computers... But that's
a topic for another article.

Our network of Linux systems has been handling round-the-clock data retrieval
chores—processing about 12,000 data points every 15 minutes—for nearly a
year, and not a single byte of data has been lost due to any system software
problems! I can think of no better tribute to all the hard-working and
immensely talented Linux developers than the simple fact that our systems
purr contentedly hour after hour after hour, utterly reliable. By golly, I'm
beginning to think Linux really is the best thing since sliced bread!

Although he began adulthood as a music composition major, Vance Petree
soon found computers a more reliable means of obtaining groceries. He has
been a programmer for Virginia Power for the past 15 years, and lives with his
wife (a tapestry weaver—which is a lot like programming, only slower) and two
conversant cats in a 70-year-old townhouse deep in the genteel stew of urban
Richmond, VA. He can be reached via e-mail at vpetreeinfi.net.

Vance Petree (vpetreeinfi.net) Although he began adulthood as a music
composition major, Vance soon found computers a more reliable means of
obtaining groceries. He has been a programmer for Virginia Power for the past
15 years, and lives with his wife (a tapestry weaver—which is a lot like
programming, only slower) and two conversant cats in a 70-year-old townhouse
deep in the genteel stew of urban Richmond, VA.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/009/1005f2.jpg
mailto:vpetreeinfi.net
mailto:vpetreeinfi.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #9, January 1995

Comeau Computing Releases C++3.0.1

Comeau Computing Releases C++3.0.1

Comeau Computing has released Comeau C++ 3.0.1 with Templates. This high-
quality, cfront-based C++ compiler comes with lifetime technical support
available through Internet e-mail, vendor conferences on BIX, Compuserve, and
Prodigy, as well as fax and voice telephone numbers. Comeau C++ for Linux
requires at least 2MB of free RAM, 2MB of free disk space, and gcc; it sells for
$250, with free second-day air shipping in the continental U.S. Comeau
maintains a presence on the ISO/ANSI C++ standards committee.

Comeau Computing also has a Bourne shell compiler called CCsh, which is also
available for Linux; contact the company for details.

Comeau Computing can be reached at 9134 120th Street, Richmond Hill, NY
11418; phone (718) 945-0009; fax (718) 441-2310; e-mail on the Internet c+
+@csanta.attmail.com, on BIX as comeau, on Prodigy as tshp50a, or on
CompuServe as 72331,3421.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An introduction to block device drivers

Michael K. Johnson

Issue #9, January 1995

Last month, we inaugurated a column on Linux kernel programming with an
article on how to write Linux device drivers without doing any kernel
programming. This month we touch the kernel as we explore block device
drivers.

It is customary for authors explaining device drivers to start with a complete
explanation of character devices, saving block device drivers for a later chapter.
To explain why this is, I need to briefly introduce character devices as well. To
do that, I'll give a little history.

When Unix was written 25 years ago, its design was eclectic. One unusual
design feature was that every physical device connected to the computer was
represented as a file. This was a bold decision, because many devices are very
different from one another, especially at first glance. Why use the same
interface to talk to a printer as to talk to a disk drive?

The short answer is that while the devices are very much different, they can be
thought of as having most of the same characteristics as files. The entire
system is then kept smaller and simpler by only using one interface with a few
extensions.

This is fine, except that it hides important differences between devices. For
example, it is possible to read any byte on a disk at any time, but it is only
possible to read the next byte from a terminal.

There are other differences, but this is the most fundamental one: Some
devices (like disks) are random-access, and others (like terminals) are
sequential-access. Of course, it is possible to pretend that a random-access
device is a sequential-access device, but it doesn't work the other way around.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A practical effect of the difference is that filesystems can only be mounted on
block devices, not on character ones. For example, most tapes are character

devices. It is possible to copy the contents of a raw, quiescent (unmounted and
not being modified) filesystem to a tape, but you will not be able to mount the
tape, even though it contains the same information as the disk.

Most textbooks and tutorials start by explaining character devices, the
sequential-access ones, because a minimal character device driver is easier to
write than a minimal block device driver. My own Linux Kernel Hackers' Guide
(the KHG) is written the same way.

My reason for starting this column with block devices, the random-access
devices, is that the KHG explains simple character devices better than it does
block devices, and I think that there is a greater need for information on block
devices right now. Furthermore, real character device drivers can be quite
complex, just as complex as block device drivers, and fewer people know how
to write block device drivers.

I am not going to give a complete example of a device driver here. I am going to
explain the important parts, and let you discover the rest by examining the
Linux source code. Reading this article and the ramdisk driver (drivers/block/

ramdisk.c), and possibly some parts of the KHG, should make it possible for you
to write a simple, non-interrupt-driven block device driver, good enough to
mount a filesystem on. To write an interrupt-driven driver, read drivers/block/

hd.c, the AT hard disk driver, and follow along. I've included a few hints in this
article, as well.

The Heart of the Driver

Whereas character device drivers provide procedures for directly reading and
writing data from and to the device they drive, block devices do not. Instead,
they provide a single request() procedure which is used for both reading and
writing. There are generic block_read() and block_write() procedures which
know how to call the request() procedure, but all you need to know about those
functions is to place a reference to them in the right place, and that will be
covered later.

The request() procedure (perhaps surprisingly for a function designed to do I/O)
takes no arguments and returns void. Instead of explicit input and return
values, it looks at a queue of requests for I/O, and processes the requests one
at a time, in order. (The requests have already been sorted by the time the
request() function reads the queue.) When it is called, if it is not interrupt-
driven, it processes requests for blocks to be read from the device, until it has
exhausted all pending requests. (Normally, there will be only one request in the

queue, but the request() procedure should check until it is empty. Note that
other requests may be added to the queue by other processes while the
current request is being processed.)

On the other hand, if the device is interrupt-driven, the request() procedure will
usually schedule an interrupt to take place, and then let the interrupt handling
procedure call end_request() (more on end_request() later) and then call the
request() procedure again to schedule the next request (if any) to be processed.

An idealized non-interrupt-driven request() procedure looks something like this:

static void do_foo_request(void) {
repeat:
 INIT_REQUEST;
 /* check to make sure that the request is for a
 valid physical device */
 if (!valid_foo_device(CURRENT->dev)) {
 end_request(0);
 goto repeat;
 }
 if (CURRENT->cmd == WRITE) {
 if (foo_write(
 CURRENT->sector,
 CURRENT->buffer,
 CURRENT->nr_sectors < 9)) {
 /* successful write */
 end_request(1);
 goto repeat;
 } else
 end_request(0);
 goto repeat;
 }
 if (CURRENT->cmd == READ) {
 if (foo_read(
 CURRENT->sector,
 CURRENT->buffer,
 CURRENT->nr_sectors << 9)) {
 /* successful read */
 end_request(1);
 goto repeat;
 } else
 end_request(0);
 goto repeat;
 }
 }
}

The first thing you notice about this function may be that it never explicitly
returns. It does not run off the end and return, and there is no return
statement. This is not a bug; the INIT_REQUEST macro takes care of this for us.
It checks the request queue and, if there are no requests in the queue, it
returns. It does some simple sanity checks on the new CURRENT request if
there is another request in the queue to make CURRENT.

CURRENT is defined by default as

blk_dev[MAJOR_NR].current_request

in drivers /block/blk.h. (We will cover MAJOR_NR and blk.h later.) This is the
current request, the one at the head of the request queue that is being

processed. The request structure includes all the information needed to
process the request, including the device, the command (read or write; we'll
assume read here), which sector is being read, the number of sectors to read, a
pointer to memory to store the data in, and a pointer to the next request.
There is more than that, but that's all we are concerned with.

The sector variable contains the block number. The length of a sector is
specified when the device is initialized (more later), and the sectors are
numbered consecutively, starting at 0. If the physical device is addressed by
some means other than sectors, it is the responsibility of the request()

procedure to translate.

In some cases, a command may read or write more than one sector. In those
cases, the nr_sectors variable contains the number of contiguous sectors to
read or write.

end_request() is called whenever the CURRENT request has been processed—
either satisfied or aborted.

If it has been satisfied, it is called with an argument of 1 and, if it has been
aborted, it is called with an argument of 0. It complains if the request was
aborted, does magic with the buffer cache, removes the processed request
from the queue, “ups” a semaphore if the request was for swapping, and wakes
up all processes that were waiting for a request to complete.

It may allow a task switch to occur if one is needed.

end_request() is a static function defined in blk.h. A separate version is
compiled into each block device driver, using special #define'd values that are
used throughout blk.h and the block device driver. This brings us to...

blk.h

We have already seen several macros which are very helpful in writing block
device drivers. Many of these are defined in drivers/block/blk.h, and have to be
specially set up.

At the top of the device driver, after including the standard include files your
driver needs (which must include linux/major.h and linux/blkdrv.h), you should
write the following lines:

#define MAJOR_NR FOO_MAJOR
#include "blk.h"

This, in turn, requires that you define FOO_MAJOR to be the major number of
the device you are writing in linux/major.h.

Now you need to edit blk.h. One section of blk.h, right near the top, includes
definitions of macros that depend on the definition of MAJOR_NR. Add an entry
to the end which looks like this:

#elif (MAJOR_NR == FOO_MAJOR)
#define DEVICE_NAME "foobar"
#define DEVICE_REQUEST do_foo_request
#define DEVICE_NR(device) (MINOR(device) >> 6)
#define DEVICE_ON(device)
#define DEVICE_OFF(device)
#endif

These are the required macros for each block device driver. There are more
macros that can be defined; they are explained in the KHG.

DEVICE_NAME is the name of the driver. The AT hard drive driver uses the
abbreviation “hd” in most places; for example, the request() procedure is called
do_hd_request(). However, its DEVICE_NAME is “harddisk”. Similarly, the floppy
driver, “fd”, has a DEVICE_NAME of “floppy”. Other drivers are even more
descriptive; read blk.h and follow suit.

DEVICE_REQUEST is the request() procedure for the driver.

DEVICE_NR is used to determine the actual physical device. For example, the
standard AT hard disk driver uses 64 minor devices for each physical device, so
DEVICE_NR is defined as (MINOR(device)>6). The SCSI disk driver uses 16 minor
device numbers per physical device, so for it, DEVICE_NR is defined as
(MINOR(device)>4). If you have only one minor device number per physical
device, define DEVICE_NR as (MINOR(device)).

DEVICE_ON and DEVICE_OFF are only used for devices that have to be turned
on and off. The floppy driver is the only driver that uses this capability. You will
most likely want to define these to be nothing at all.

All these macros, as well as many others, can be used in your driver where
appropriate. blk.h includes a lot of macros, and studying how they are used in
other drivers will help you use them in your own driver. I won't document them
fully here, but I will briefly mention some of them to make your life easier.

DEVICE_INTR, SET_INTR, and CLEAR_INTR make support for interrupt-driven
devices much easier. DEVICE_ TIMEOUT, SET_TIMER, and CLEAR_TIMER help you
set limits on how long may be taken to satisfy a request.

The First Shall Be the Last

I've saved the first, and perhaps most important, thing for last. Before you can
read or write a single block, the kernel has to be notified that the device exists.
All device drivers are required to implement an initialization function, and there

are some special requirements for block device drivers. Here is a sample
idealized initialization function:

long foo_init(long mem_start, int length)
{
 if (register_blkdev(FOO_MAJOR,"foo", & foo_fops)) {
 printk("FOOBAR: Unable to get major %d.\n",
 FOO_MAJOR);
 return 0;
 }
 if (!foo_exists()) {
 /* the foobar device doesn't exist */
 return 0;
 }
 /* initialize hardware if necessary */
 /* notify user device found */
 printk("FOOBAR: Found at address %d.\n",
 foo_addr());
 /* tell buffer cache how to process requests */
 blk_dev[FOO_MAJOR].request_fn = DEVICE_REQUEST;
 /* specify the blocksize */
 blksize_size[MAJOR_NR] = 1024;
 return(size_of_memory_reserved);
}

The three things here that are specific to block device drivers are:

• register_blkdev() registers the file operations structure with the Virtual
Filesystem Switch (VFS), which is the system that manages access to files.

• blk_dev tells the buffer cache where the request procedure is.
• blksize_size tells the buffer cache what size blocks to request.

It is worth noting that the hardware device detection and initialization, which I
have denoted as foo_exists() here, is very delicate code. If you can rely on a
string somewhere in the BIOS of the computer to determine whether the
device exists and where it is, it's relatively easy. However, if you have to check
various I/O ports, you can hang the computer by writing the wrong value to the
wrong port, or even reading the wrong port. Check only well-known ports if you
must check ports, and provide kernel command-line arguments for other ports.
To do this, read init/main.c and add a section of your own. If you can't figure
out how to do it, an explanation is forthcoming in the next version of the KHG.

Of course, none of this initialization will happen if foo_init() is never called. Add
a prototype to the top of blk.h with the other prototypes, and add a call to
foo_init() in ll_rw_blk.c in the blk_dev_init() function. That call should be
protected by #ifdef CONFIG_FOO like the rest of the *_init() functions there, and
a corresponding line should be added to the config.in file:

bool `Foobar disk support' CONFIG_FOO y

drivers/block/Makefile should have a section added that looks like this:

ifdef CONFIG_FOO
OBJS := $(OBJS) foo.o

SRCS := $(SRCS) foo.c
endif

This done, configuration should work correctly. Your device driver file does not
need to have any references to CONFIG_FOO; the only specific reference to it is
commented out in ll_rw_blk.c, and the makefile only builds it if it has been
configured in.

Now all you have to do is write and debug your own new block device driver. I
wish you the best of luck, and I hope that this whirlwind tour has given you a
head start.

Other Resources

Michael K. Johnson is the editor of Linux Journal, and is also the author of the
Linux Kernel Hackers' Guide (the KHG). He is using this column to develop and
expand on the KHG.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/009/2890s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/009/toc009.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	A Conversation with Linus Torvalds
	Belinda Frazier

	Connecting Your Linux Box to the Internet
	Russell Ochocki
	Get Some Experience First
	What Type of Dedicated Connection Should I
Get?
	The Hardware
	Choosing an Internet Service Provider
	What To Do with Your Connection?
	Looking Further

	Remote Network Commands
	Jens Hartmann
	Setup:
	RCP:
	rsh:
	rsh Wizardry:
	Problems:
	Conclusion:

	Linux Development Grant Fund
	LJ Staff

	Linux System Administration
	Mark Komarinski
	System-Wide
	Tar Tips

	Unix Systems for Modern Architectures
	Randolph Bentson

	Letters to the Editor
	Various
	Who's Counting?
	Hacker's OS
	ez = ?
	Stop: You're Making Us Blush
	Debugging the Printer
	Correction

	What We've Been Up To
	Michael K. Johnson
	What We've Been Up To

	Looking into the Future
	Phil Hughes
	Why is this amazing?

	Virginia Power—Linux Hard at Work
	Vance Petree

	New Products
	LJ Staff

	An introduction to block device drivers
	Michael K. Johnson
	The Heart of the Driver
	blk.h
	The First Shall Be the Last

